鸭舌有什么好处

发表于 讨论求助 2023-08-19 10:55:38

工业物联网

     一、逐点校正技术概念

  当前led芯片生产制程现状,决定了即便是同批次生产出的led芯片,其个体间发光强度与主波长依然存在相当大的差异性。对于led显示应用来说,这种差异性将严重影响显示质量,必须首先通过分光分色对光度、色度以及电参数等指标进行分类筛选后,才能应用于同一张显示屏上。

  然而,用分光分色的方法来解决芯片个体光度色度不一致的问题,由于不足,后续工艺流程的影响,以及老化过程的光衰不一致等因素,并不能达到完美画质。此外,已使用一段时间后的显示屏也会因光衰不一致等因素显示质量下降,出现“花屏”,这也是分光分色鞭长莫及的。

  因此,业界尝试从显示屏制造的一道流程着手,通过对差异性的led灯点采用差异性的驱动来解决该问题,这就是逐点校正。

  上世纪90年代后期,国内外出现逐点校正的理论雏形,并开启了这一技术的实践探索。然而,由于缺乏适用的通用数据采集工具以及技术壁垒等因素,该技术的研究长期处于不连续、不系统,自成一家缺乏交流的状态,逐点校正也缺乏一个公认的定义。

  目前,比较合理的定义为:逐点校正,即通过对led屏上的每颗灯点区域的亮度(和色度)数据进行采集,得出对于每颗灯点的校正系数(或对于每个像素的系数矩阵),将其反馈给显示屏的控制系统,由控制系统应用校正系数实现对每颗灯点的差异性驱动,从而大幅提高显示屏的像素亮度(色度)均匀性。

  二、逐点校正技术组成

  从上面的定义可以看到,逐点校正技术可以分解为以下四个部分:

  1. 原始数据采集;

  2. 校正数据生成;

  3. 驱动控制;

  4. 采集系统与控制系统的结合;

  以下就这四个方面分别进行分析阐述。

  2.1 原始数据采集

  原始数据采集是逐点校正的步,是基础的一步,也是发展缓慢艰难的一步。按照采集参数看,可分为亮度数据和色度数据两种;按照采集对象分,可分为模块级采集,箱体级采集与全屏分区域采集;按照采集环境分,可分为工厂模式采集与现场模式采集;从采集的技术路线与工具的角度看,则大致可以分为以下几个方向:

  1. 机械装置+光度探头:即用机械传动装置控制光度探头依次逐个采集每颗灯点的数。早期的实验装置曾经是屏体垂直于地面放置,用机架等间距移动亮度计逐点测量。后来逐渐发展为机台形式,模块或单元板水平放置,探头垂直采集数据。为提高效率,单个机台可装置多个探头,笔者见闻中单机台多探头数为16个,以箱体为单位进行采集。

  这种采集方法的优点在于高,但也有着致命的缺陷:效率低。难以实现大规模工业化应用。此外,无法实现现场校正。近年来,随着技术进步,这种机台式采集方法正渐渐地淡出历史舞台。

  2. 数码相机:利用数码相机对灯点的成像灰度数据,来实现逐点校正,可说是当前廉价的采集解决方案。08年以来,几大显示屏控制系统厂商均陆续大力投入研发力量,开发自己的相机采集系统,开展逐点校正的实践,大大促进了逐点校正技术的推广和普及。

  数码相机方案的优点在于设备相对廉价,缺点在于低、稳定度差,个体间一致性差异也很大,难以满足大规模工业生产的需求。此外,数码相机方案多由控制系统厂商结合自身系统独立开发,互不兼容。

  3. 基于ccd的平面亮度/色度分布测量仪器:此类仪器的研发伴随着平板显示产业的高速增长,其利用成像亮度测量原理,可高效获取成像平面上任意区域的亮度/色度值。自06年以来,日本、美国、丹麦、法国、德国以及中国均有相关产品陆续问世,但能满足led逐点校正实用化特殊要求的却寥寥无几。

  这类设备高,稳定性好,校正效果佳,但价格相对昂贵。

  4. 工业ccd采集方案:上述几个方向之外,还有一些基于工业相机的解决方案,如barco公司自行开发的工业相机模组校正流水线方案;再如逐点校正的先驱长春希达,他们自主研发并持续完善的工业 ccd校正方案,是国内首创的亮色一体校正解决方案。

  工欲善其事,必先利其器。随着采集工具的效率提高,功能增强,逐点校正的数据采集有了更广泛的空间和可能性,从工厂延伸到了现场,从新屏延伸到了老屏,从平面屏扩展到了弧形屏乃至异形屏。

      2.2 校正数据的生成

  校正数据的生成可分解为3个部分,一是原始数据修正处理,二是校正目标值的设定,三是校正数据的计算生成。其中重要的技术突破在于“原始数据修正处理”,尤其是现场校正环境下的数据修正。

  2.2.1  原始数据修正处理

  现场校正简单的一种情况是:平面屏,选择显示屏的观众区域作为单一的数据采集机位,对全屏分区域依次进行数据采集。这样采集到的数据必然带有因观察视角不同引入的系统误差。采集数据呈现:垂直法线方向亮度高,偏离法线方向亮度下降,偏离角度越大,亮度越低的现象。如果不加以修正,校正后的显示屏必然将下部暗,上部亮;机位垂直方向暗,两边亮;偏离校正点观看时,明暗出现失真。

  而当屏体是外弧形或现场环境限制,必须多机位才能完成采集时,由于不同机位采集视角不同,如不加修正,其接缝处必将出现明显的分界线。

  上述问题导致很多屏无法进行现场校正。近来,有数码相机方案采用邻区对比反馈的方式,也有设备采用拍摄全屏图像做参考的方式进行修正。

  2.2.2  校正目标值的设定

  校正目标值的设定也是逐点校正技术值得深入探讨的一部分。众所周知,亮度校正损失亮度,色度校正既损失亮度也会损失色域空间和色彩饱和度。那么如何设定合理的校正目标亮度和色度值,结合客户需求,在亮度、色域和均匀度之间找到平衡点呢?

  当前,很多数码相机校正方案,因为缺乏中间数据,都将目标值的设定环节放在采集之前,然而不同的显示屏有着不同的平衡点,尤其是色度校正,目标值设定的不合理,将直接导致校正失败!合理的目标值设定依赖采集数据的统计分析,因此,我们将目标值的设定放在采集完成之后,并提供各种辅助参数和图线帮助用户调整目标值。

  2.3 驱动控制

  有了校正数据,还需要控制系统的正确应用,才能实现逐点校正。

  驱动控制的实现有两种途径:一为电流幅度控制,二为脉冲宽度控制(pwm方式)。由于电流幅度与亮度并不是严格的线性关系,且电流的增减会引起led芯片主波长的偏移,因此,电流控制应用得越来越少,当前逐点校正驱动控制实现的主要方式为调节脉宽。

  国内主要控制系统供应商早已实现逐点的led灯点差异性驱动控制,只是由于通用采集设备的缺失,直到2008年,逐点校正仍是少数自有控制系统的行业领军企业的独有技术优势。随着采集设备的突破进展,08年还大部分停留在宣传卖点上,无法实用起来的控制系统逐点校正功能,到2010年已逐渐成为控制系统入市的必备利器。到今天,市场上的全彩显示屏控制系统,不具备亮度逐点校正能力的已寥寥无几。

  但是,逐点校正的驱动控制方面,也还存在有待完善的地方,表现在以下几个方面:

  1. 校正的低辉及线性表现有待改善;

  2. 目前具备色度校正功能的系统尚为数不多;

  3. 校正后带载点数有待扩展;

  此外,除了利用控制系统实现驱动控制外,还有一种技术思路是通过对前端视频流进行实时处理,从信号源的层面实现校正。可分为硬件实现与软件实现两种。硬件实现即在视频信号源与控制系统之间加一个信号处理器,内部存储校正数据,对输入的视频流信号应用校正数据进行实时运算后输出给控制系统。软件实现即截取电脑为信号源的显示数据流,加以校正数据运算后输出到dvi端口。

  与控制系统实现校正相比较,由于dvi信号只有为8位,这种用前端视频处理器实现校正的方法将严重损失灰度,其低辉与线性表现不佳将是必然结果,且应用色度校正时,也会因不足效果不理想。

  2.4 采集系统与控制系统的结合

  逐点校正过程中,需要以下三个步骤:控制系统控制屏体,在指定区域显示红绿蓝三色画面;采集系统分别完成采集;生成校正数据后写入控制系统。

  09年前,采集系统多为控制系统自己开发,配合自己的控制系统使用。因此,无论是模块级、箱体级还是全屏级校正,采集系统与控制系统之间大都使用自定义的控制接口协议互动完成。

  这种控制接口协议的结合方式自动化程度高,写入数据的过程无需人工干预。对于一些数码相机校正方案,因测量设备与稳定性不足,需要反复采集、邻区比对等才能保证区域间一致性,因此要求采集和显示控制紧密互动,这种控制接口协议的结合方式是选择。然而,这也造成了采集系统与控制系统捆绑,互不兼容。在控制系统技术不断创新发展,新的控制系统不断涌现的今天,无疑并不符合led屏制造商的利益。

  led屏厂商引进进口采集设备结合自有控制系统,有两种情况,一是遵照采集系统的控制接口协议要求对控制系统进行改造,使用采集系统的软件功能完成校正;二是自行开发软件,实现显示控制、采集系统采集、与校正数据的生成与写入。这2种情况都意味着技术导入难度高、成本高,也同样地,不兼容,无法与市场通用的控制系统相结合。

  因为采集设备、稳定,仅需数据采集即可完成校正,因此显示控制的部分变得十分简单,不需要与控制系统交互通信也可完成。而写入控制系统的步骤,则可以使用数据文档的形式,由控制系统自行完成读取写入相关存储区域的工作。

  这样一来,通用控制系统无需做任何改造,也无需公开任何控制接口命令,就可以通过读取中科维优公开格式的校正数据文档,实现逐点校正,系统对接的工作量压缩到,采集系统也成本地实现了与层出不穷的控制系统之间的兼容。

  数据接口协议的结合方式实现简易,灵活,兼容性好,但自动化程度低,未来行业内形成标准逐点校正控制接口协议,将会是该环节的解决之道。

发表
26906人 签到看排名